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Abstract
An elementary integral representation for the Lommel function S−1,0(z) is
given and extended to other exceptional cases.

PACS numbers: 02.30.Gp, 02.30.Uu

1. Introduction

The Lommel function [1] generally denoted by Sμ,ν(z) is a particular solution to the
inhomogeneous Bessel equation

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = zμ+1 (1)

and occurs in a variety of studies in physics and engineering [2–5]. The standard reference
formulas for this function (e.g. [6–8]) are restricted to the cases where μ ± ν is not a negative
odd integer. To the author’s knowledge the only detailed description of the exceptional case
S−1,0(z) is by Watson [1], who gives the explicit expression

S−1,0(z) = 1

2

∞∑
k=0

(−1)k(z/2)2k

(n!)2

{
[ln(z/2) − ψ(k + 1)]2 − 1

2
ψ ′(k + 1) +

π2

4

}
. (2)

Representations for this exceptional case, S−1,0(z), are less well documented [9]1 and the aim
of this work is to provide a simple alternative derivation.

1 This formula is incorrect as printed and should read

Sμ,ν(z) = zμ+1
∫ ∞
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2. Derivation

We begin with an integral identity, which appears to be new and of broad utility.

Theorem 1. For |Re[μ, ν]| < 2 and a > 0∫ ∞

0
Kν(a sinh t)

sinh(μt)

sin(μπ/2)
dt =

∫ ∞

0
Kμ(a sinh t)

sinh(νt)

sin(νπ/2)
dt. (3)

Proof. From [10] we have, under the conditions stated,∫ ∞

0
Kν(ax) sin(xy) dx = π

4
a−ν csc(νπ/2)

[
√

a2 + y2 + y]ν − [
√

a2 + y2 − y]ν√
a2 + y2

(4)

and the similar formula with ν and a replaced by μ and b, respectively. Therefore, by the
Parseval identity for the Fourier transform,

b−μ

sin(μπ/2)

∫ ∞

0

Kν(ax)√
b2 + x2

{[
√

b2 + x2 + x]μ − [
√

b2 + x2 − x]μ} dx

= a−ν

sin(νπ/2)

∫ ∞

0

Kμ(by)√
a2 + y2

{[
√

a2 + y2 + y]ν − [
√

a2 + y2 − y]ν} dy. (5)

Next, on the right-hand side of (5) scale y → au, on the left-hand side scale x → bu and
replace ab by a. Finally, the substitution u = sinh t on both sides produces (3). �

Writing μ = ix we obtain

Corollary 1. For x real, a > 0,∫ ∞

0
Kix(a sinh t)

sinh(νt)

sin(νπ/2)
dt =

∫ ∞

0
Kν(a sinh t)

sin(xt)

sinh(πx/2)
dt. (6)

Equation (6) is of interest with respect to the Kontorovich–Lebedev (K-L) transform as
it can replace integration over the complex index to integration over a real argument of an
elementary function.

Theorem 2. For Re[z] > 0

S−1,0(z) =
∫ ∞

0
t e−z sinh t dt. (7)

Proof. We note the known K-L transform [11]∫ ∞

0
cos(bx)Kix(y) dx = π

2
e−y cosh b (8)

and the elementary result∫ ∞

0

cos(bx) sin(tx)

sinh(πx/2)
dx = sinh(2t)

cosh(2b) + cosh(2t)
. (9)

Then multiplying both sides of (6) by cos(bx) and integrating over x, where the change of the
integration order is allowed by absolute convergence, the result can be manipulated into the
form
π

2

∫ ∞

0
e−a cosh(b) sinh(t) sinh(νt)

sin(πν/2)
dt = a−1/2

∫ ∞

0

x1/2

cosh2 b + x2

√
axKν(ax) dx. (10)

Now we take the limit ν → 0 and note that the right-hand integral in (10) is a tabulated
K-transform [12] to obtain∫ ∞

0
t e−a cosh(b) sinh t dt = S−1,0(a cosh b) (11)

which is just (7) with a cosh b = z. �

2
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3. Discussion

The best known elementary integral representations for the functions Sμ,ν(z) appear to be due
to Szymanski [13], who found, following Hankel’s work for the ordinary Bessel functions,

Sμ,ν(z) = zμ+1
∫

(0,+1,1+i∞)

eiztWμ,ν(t) dt (12)

Wμ,ν(t) = (−1)(ν−μ−2)/2

√
π�[(μ + ν + 1)/2]

2ν−μ�(ν + 1/2)�[(ν − μ + 1)/2]

dν−μ−1

dtν−μ−1
(1 − t2)ν−1/2, (13)

which is invalid for the exceptional case because of the �-function in the numerator of (13).
By a simple change of variable and integration by parts, (7) can be expressed as the

Laplace transforms

∫ ∞

0

sinh−1 x√
x2 + 1

e−zx dx = S−1,0(z) (14)

∫ ∞

0
[sinh−1 x]2 e−zx dx = 2

z
S−1,0(z). (15)

The availability of recursion relations such as[
d

dz
− ν

z

]
Sμ,ν(z) = (μ − ν − 1)Sμ−1,ν+1(z) (16)

provides similar representations for all other exceptional cases; for example,

S−2,1(z) = 1

2

∫ ∞

0
t sinh t e−z sinh t dt = 1

2

∫ ∞

0

x sinh−1 x√
x2 + 1

e−zxdx. (17)

Finally, the existence of such a simple representation as (7) can streamline the evaluation of
integrals containing S−1,0(z), since for arbitrary f∫ ∞

0
f (x)S−1,0(x) dx =

∫ ∞

0

sinh−1 x√
x2 + 1

F(x) dt (18)

where F denotes the Laplace transform of f and the interchange of the integration order is
allowed. An interesting example is

φ(ν) =
∫ ∞

0
xνJν(x)S−1,0(x) dx = 2ν �(ν + 1/2)√

π

∫ ∞

0

sinh−1 x

(1 + x2)ν+1
dx. (19)

Thus, φ(0) = 2G and φ(1/2) = √
2/π . This extends the calculation of Aslam Chaudhry

[14], which was, in part, the motivation for this work.
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